Publications
The most up-to-date and comprehensive record of publications is likely to be found on Google Scholar. Below, we give a selection of some of the more recent publications in different areas.
Select Recent Highlights
Quantum Embedding
- On the effective reconstruction of expectation values from ab initio quantum embedding: Nusspickel, Ibrahim, Booth, J. Chem. Theory Comput., (2023). In Press.
- Systematic improvability in quantum embedding for real materials: Nusspickel, Booth, Phys. Rev. X, 12, 011046 (2022).
- Extending density matrix embedding: A static two-particle theory: Scott, Booth, Phys. Rev. B, 104, 245114 (2021)
- Fully algebraic and self-consistent effective dynamics in a static quantum embedding: Sriluckshmy, Nusspickel, Fertitta, Booth, Phys. Rev. B, 103, 085131 (2021).
- Efficient compression of the environment of an open quantum system: Nusspickel, Booth, Phys. Rev. B, 102, 165107 (2020).
- Frequency-dependent and algebraic bath states for a dynamical mean-field theory with compact support: Nusspickel, Booth, Phys. Rev. B, 101, 045126 (2020).
- Energy-weighted density matrix embedding of open correlated chemical fragments: Fertitta, Booth, J. Chem. Phys., 151, 014115 (2019).
- Rigorous wave function embedding with dynamical fluctuations: Fertitta, Booth, Phys. Rev. B, 98, 235132 (2018).
- Spectral functions of strongly correlated extended systems via an exact quantum embedding: Booth, Chan, Phys. Rev. B, 91, 155107 (2015). arXiv link
Quantum Computing
- The variational quantum eigensolver: a review of methods and best practices: Tilly et. al., Physics Reports 986, 1 (2022).
- Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure on current generation quantum computers: Tilly, Sriluckshmy, Patel, Fontana, Rungger, Grant, Anderson, Tennyson, Booth, Phys. Rev. Research, 3, 033230 (2021).
- Variational quantum eigensolver for dynamic correlation functions: Chen, Nusspickel, Tilly, Booth, Phys. Rev. A, 104, 032405 (2021).
- Automatic post-selection by ancillae thermalization: Wright, Barratt, Dborin, Booth, Green, Phys. Rev. Research, 3, 033151 (2021).
Green's Function Theory
- A “moment-conserving” reformulation of GW theory: Scott, Backhouse, Booth, J. Chem. Phys., 158, 124102 (2023).
- Constructing 'full-frequency' spectra via moment constraints for coupled cluster Green's functions: Backhouse, Booth, J. Chem. Theory Comput., 18, 6622 (2022).
- Scalable and predictive spectra of correlated molecules with moment truncated iterated perturbation theory: Backhouse, Santana-Bonilla, Booth, J. Phys. Chem. Lett., 12, 7650-7658 (2021).
- Efficient excitations and spectra within a perturbative renormalization approach: Backhouse, Booth, J. Chem. Theory Comput., 16, 6294–6304 (2020).
- Wave function perspective and efficient truncation of renormalized second-order perturbation theory: Backhouse, Nusspickel, Booth, J. Chem. Theory Comput., 16, 1090–1104 (2020).
Machine Learning quantum states
- A framework for efficient ab initio electronic structure with Gaussian Process States: Rath, Booth, arXiv:2302.01099 (2023).
- Quantum Gaussian process state: A kernel-inspired state with quantum support data: Rath, Booth, Phys. Rev. Research, 4, 023126 (2022).
- Gaussian process states: A data-driven representation of quantum many-body physics: Glielmo, Rath, Csanyi, De Vita, Booth, Phys. Rev. X, 10, 041026 (2020).
- A Bayesian inference framework for compression and prediction of quantum states: Nusspickel, Booth, J. Chem. Phys., 153, 124108 (2020).
Quantum Monte Carlo
- Full configuration interaction quantum Monte Carlo for coupled electron-boson systems and infinite spaces: Anderson, Scott, Booth, Phys. Rev. B, 106, 155158 (2022).
- Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems: Anderson, Booth, J. Chem. Phys., 153, 184103 (2020).
- Improved stochastic multireference perturbation theory for correlated systems with large active spaces: Halson, Anderson, Booth, Molecular Physics, e1802072 (2020).
- NECI: N-Electron Configuration Interaction with an emphasis on state-of-the-art stochastic methods: Guther et. al., J. Chem. Phys., 153, 034107 (2020).
- Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework: Anderson, Shiozaki, Booth, J. Chem. Phys., 152, 054101 (2020).
- Nonlinear biases, stochastically sampled effective Hamiltonians, and spectral functions in quantum Monte Carlo methods: Blunt, Alavi, Booth, Phys. Rev. B, 98, 085118 (2018).
- A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface: Tsatsoulis et. al., J. Chem. Phys., 146, 204108 (2017). arXiv link
- Projector Quantum Monte Carlo Method for Nonlinear Wave Functions: Schwarz, Alavi, Booth, Phys. Rev. Lett., 118, 176403 (2017). arXiv link
- Stochastic Multiconfigurational Self-Consistent Field Theory: Thomas et. al., J. Chem. Theory Comput., 11, 5316 (2015). arXiv link
- Krylov-Projected Quantum Monte Carlo Method: Blunt, Alavi, Booth, Phys. Rev. Lett., 115, 050603 (2015). arXiv link
- Accurate Ab Initio Calculation of Ionization Potentials of the First-Row Transition Metals with the Configuration-Interaction Quantum Monte Carlo Technique: Thomas, Booth, Alavi, Phys. Rev. Lett., 114, 033001 (2015).
- Linear-scaling and parallelisable algorithms for stochastic quantum chemistry: Booth, Smart, Alavi, Mol. Phys., 112, 1855 (2013). arXiv link
- Towards an exact description of electronic wavefunctions in real solids: Booth et. al., Nature, 493, 365 (2013).
- Excited states, dynamic correlation functions and spectral properties from full configuration interaction quantum Monte Carlo: Booth, Chan, J. Chem. Phys., 137, 191102 (2012). arXiv link
- Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space: Booth, Thom, Alavi, J. Chem. Phys., 131, 054106 (2009).
Strong Field Dynamics
- High harmonic generation in two-dimensional Mott insulators: Orthodoxou, Zair, Booth, npj Quantum Materials, 6, 76 (2021).
- Controlling arbitrary observables in correlated many-body systems: McCaul et. al., Phys. Rev. A, 101, 053408 (2020).
- Driven imposters: Controlling expectations in many-body systems: McCaul et. al., Phys. Rev. Lett., 124, 183201 (2020).
Other
- Recent developments in the PySCF program package: Sun et. al., J. Chem. Phys., 153, 024109 (2020).
- Direct comparison of many-body methods for realistic electronic Hamiltonians: Williams et. al., Phys. Rev. X, 10, 011041 (2020).
- PySCF: the Python‐based simulations of chemistry framework: Sun et. al., Wiley Interdisciplinary Reviews: CMS, 8, e1340 (2018).
- From plane waves to local Gaussians for the simulation of correlated periodic systems: Booth et. al., J. Chem. Phys., 145, 084111 (2016). arXiv link
- Explicitly correlated plane waves: Accelerating convergence in periodic wavefunction expansions: Gruneis et. al., J. Chem. Phys., 139, 084112 (2013). arXiv link
For a technical overview of current research directions, see our Research page.